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SUMMARY

By recourse to a particular definition of a satellite's mean orbital

elements and to a particular system of spherical polar coordinates based on the

mean orbital plane, an orbital theory has been developed that leads to extremely

compact first-order perturbation formulae associated with the general zonal

harmonic, J . The formulae are complete (untruncated in eccentricity) and

generalize, via recurrence relations, the author's earlier results for the effects

of J2  (analysed to second order) and J3 * To illustrate the compact nature of

individual expressions, the (untruncated) perturbation formulae due to J4 are

given.
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AAS 89-451

PERTURBATIONS, UNTRUNCATED IN ECCENTRICITY,
FOR AN ORBIT IN AN AXI-SYMMETRIC

GRAVITATIONAL FIELD

R. H. Gooding

By recourse to a particular definition of a
satellite's mean orbital elements and to a
particular system of spherical polar coordinates
based on the mean orbital plane, an orbital theory
has been developed that leads to extremely compact
first-order perturbation formulae associated with
the general zonal harmonic, Jj . The formulae are
complete (untruncated in eccentricity) and
generalize, yia recurrence relations, the author's
earlier results for the effects of J2 (analysed to
second order) and J3 • To illustrate the compact
nature of individual expressions, the (untruncated).
perturbation formulae due to J4 are given.

INTRODUCTION

In an earlier paper 1 , the author summarized a theory for satellite
perturbations due to the harmonics J2 and J3 of the Earth's gravit-
ational field, presenting formulae that are complete (untruncated in
eccentricity) to second order in J 2 and first order in J3 . The
novelty of the theory arises from the way in which short-period pertur-
bations in the osculating element are amalgamated into perturbations in
a set of spherical-polar coordinates (r, b, w), based on a mean orbital
plane: r is the geocentric distance (radial direction), whilst b
and w are quasi-latitude (cross-track direction) and quasi-longitude
(along-track direction). Particular definitions of the mean orbital
elements were adopted, to make the coordinate-perturbation expressions
as compact as possible, these expressions being complemented by
formulae for the rates of change of the mean elements, to take care of
the secular and long-period behaviour.

Full details of the J2 /J3 theory are given in a recent RAE
report2 , and a subsequent report 3 gives the details of the theory's
extension (to first order) to the general zonal harmonic, J£ * The
present paper is essentially a precis of Ref. 3, which will often be
referred to simply as 'the Report'.

Royal Aerospace Establishment, Farnborough, Hampshire GU14 6TD, England.
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The starting point for the theory is the decomposition of Ut
the potential due to JZ , into a finite sum of component terms, U,

each of which is associated with a particular function of the orbital
inclination. Then, to integrate Lagrange's planetary equations,
(p/r) t -1 (where p is the semi--latus rectum of the orbit) is expanded
as a finite sum of terms, each of which is associated with an
eccentricity function. The two sets of functions can be generated by
the use of recurrence relations, and certain of these relations are
also vital in the development of the coordinate-perturbation formulae
(expressions for 6r, 6b and 6w, associated with Uk ) that constitute
the principal results of 

the paper.

For each of 6r, 6b and 6w, the general formula (associated with
Uk ) involves a sum of terms over a third index, j . Certain values
of j lead to zero denominators in particular terms, but for 6r and
6b these terms can be eliminated altogether, by the definition of the
mean elements. For 6w , on the other hand, most of the potentially
infinite terms do not just disappear; instead, they are replaced by
particular finite terms that are induced by the element definitions.
The formulae for these 'particular' terms supplement the general formu-
lae. A further complication originates from the necessity to change
the integration variable, in the planetary equations, from t (time) to
v (true anomaly). Since the mean elements evolve with t , rather than
v , an additional short-period perturbation is induced by every secular
or long-period component of the rate of change of a mean element; the
perturbations induced by the long-period components (but not the
secular components) are best treated like the pure short-period pert-
urbations, by amalgamating them into perturbations in the coordinates.

To exemplify the general theory, specific results are given for
the harmonic J4 . The secular and long-period expressions for the
element rates of change are well-known, but the expressions for 6r
6b and 6w have not been given before.

The formulae associated with the general zonal harmonic do not
immediately extend to the tesseral harmonics, because of the complica-
tion introduced by the Earth's rotation. For a zero rate of rotation,
however, the extension is simple and straightforward, if of little
practical value, and this is the final topic of the paper.

It is convenient to conclude the introduction with some remarks on
notation. We assume the usual eliiptic elements (a, e, i, , W, M),
with n and a defined such that M a + fn dt ; further, this inte-
gral will often be written just as f • As in the author's earliest
work 4 on orbital theory, we also find it convenient to utilize the
quasi-elements * , p and L , defined such that d* - dw + c d,
where c - cos i (and we also write s = sin i ), dp - do + q d*
(where q2 - 1 - e2) and dL - dM + q dip . Finally, and as a valuable

shorthand, we define

C - cos (v + ku') and Sj - sin (jv + ku') , (1)

TM Sp 379
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where u' - w + v - 4-w (argument of latitude measured from the north
apex of the orbit); when no ambiguity is possible, we will frequently
omit the superfix k in this notation.

POTENTIAL DEVELOPED VIA THE INCLINATION FUNCTIONS

The standard expression for U is

S k J (R/r)i P (sin 0) . (2)U - r

As in Ref. 4, we expand P9 (sin 8) via the addition theorem for zonal
harmonics; thus

=(.- k)!P OP()
P (sin B) k)! Pj(0) p(c) cos ku' (3)

k=O

Here u0 = 1 , uk = 2 if k > 0 , and the Legendre function P k is
defined by

Pk(c) = sk dkp (c) (4)
dck 

(

The second factor (the k'th derivative) in (4) is a polynomial in
c , which (with k ) does not vanish when c = 1 , its value then
being (i + k)!/{ 2k k! (9 - k)!} . Hence this factor may be normalized,
in a certain useful sense, and we write

dkp(c) (I + k)i (5)

dck 2k k! (I - k)!

where Ak(i) is a pure polynomial in s2 if k has the same parity
as I , but has an additional factor c if k and Z are of opposite
parity; in each case the constant term in the polynomial is unity, by
the normalization. Explicit expressions for the Ak(i) are given in
Table 1 of the Report.

We can now rewrite (3) as

P (sin k) = A s k A(i) cos ku' , (6)
k=O

where the constant, aQk is given by

ak = uk P (O) /(2k k!) (7)

It is clear, from the last paragraph, that Pk(O) vanishes when k
and 9 are of opposite parity, and it may be shown that when the
parity is the same,
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±(.-k) (£ + k)! (8)

P1(0) (-1) 21 {(t + k))! {{(£. - k)!

In substituting (6) into (2) it is of great benefit to introduce a new
quantity, Aik , defined by

Atk= J (R/P)£ sk Ak(i) (9)

Tnis permits us to write

i L (p/r)i *1 A C . (10)

It will be noted that, whereas A (i) is defined and useful
regardless of parity, A9 k (and hence Z U ) is only non-zero when k
and I are of the same parity. However, a use will be found for quan-
tities that behave in the opposite way from alk and Akk , antici-
pating which we define (with bold letters to make the distinction)

S= u, (.a - K + 1) PK+ (0)/( 2K K! Z) (11)

and

A£. = J9 (R/p)9- a, sK AK(i) , (12)

where k has been replaced by K to signify that we now have
quantities that are non-zero only when K and Z are of opposite
parity.

We will require derivatives of the inclination functions. It is
evident from (5) that

d {Ak(i) }  (t- k)(t + k + 1) k+1
2(k + 1) s M (13)

from this and (9) it follows that the (partial) derivative of Aik
with respect to i is given by

Aik J9. (R/p) 9- a9.k 5 k-1 { M ~ - 2 )(9.k + 1 ) A, (14)j

We will also require, finally, the particular combinations of A9k andI + 
L

A'k denoted by Aik and A-k , and given by

A ks - 1 Ak c - 1 A# (15)

these definitions reduce 3 to

(. - k)(. + k + 1) c_1 sk+l Ak+l(i )  (16)
Aik aJ(R/p) S9k 2(k + 1) c

TM Sp 379
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and

A+k = 2k J (R/p)t aik c -1 sk-1 A - I ( i ) (17)

Various recurrence relations for the functions Ak(i) were given
in the Report, and these may be used (if any possibility of instabil-
ity 5 is disregarded) to generate the Aik and At. . It is also

possible to connect Aik and Aik with the appropriate A1K , and the
following pair of formulae will be needed in the sequel:

1 = 2kcs-1 (18)

Uk+1 Uk-1 uk

and

i [At' + A9,k.1 = 2AZ' (19)Uk+ I  U7-1 uk

ECCENTRICITY FUNCTIONS REQUIRED IN SUBSEQUENT ANALYSIS

The term U of the potential, specified by (2), has now been
decomposed into the Uk defined by (10), the latitude (8) having been
eliminated. The longitude was absent from U% from the beginning,
because of axial symmetry, so it remains to eliminate the radius vector
(r) . Since p/r = 1 + e cos v , an expansion of the form

t-1
(p/r)i - I  = I uj Btj cos jv (20)

j=O

is possible, for t Z 1 , and we regard Bj as defined by this expan-
sion; clearly, B i. is a polynomial in e . We shall find it useful,
and entirely natural, to extend the definition of B£j to negative
j , by defining Bij = Bj, hl , and to take Btj = 0 when tii 9.
On this basis we can replace (20) by

(P/r)=-  - I B9 j CQ , (21)

where the summation effectively runs from j = -- to j = +m The

Bj are directly related to the Hansen X functions of classical
cetlestial mechanics, since

B j - q2 t-1 X0 t-I,j (22)

We proceed, as in Ref. 4, to express the e-polynomial B9.i, when
% Z 1 and 0 S j < 9 , in terms of a normalized polynomial ,t Re
connecting relation being

Bjj ( 1 ) (e/2)J Bj(e) ; (23)

Bj(e) in (23) is a polynomial in e2 , with constant term unity by the
normalization. Explicit expressions for the Bj(e) are given in

Table 3 of the Report.
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In contrast with the Alk , however, it is usually better to work
with the BU.  directly, rather than through Bj(e) and (23). One
reason for tNis is that only alternate values of the Akk are non-
zero, whereas (for 1JI < i and e - 0) all the BE.  are non-zero.
Further, no difficulty arises with the B9.  when < 0 , whereas
Bj(e) would then be infinite (if Iii < 9 "). We can even allow t to
be negative (or zero) as well as j ; the validity of this follows
from the universality of (22).

In regard to derivatives of the eccentricity functions, it can be
shown that, for I S j < ,

-e{BJ(e)} = 2je I {BJ_(e) - BJ(e)I . (2)

The universal formula (valid for all j ) for the derivative of Bij
can then be shown to be

Bjj = (9 - 1) Bi- 1, j-1 - j e-1 Bij (25)

However, because we only introduce the B.  after each planetary
equation has been set up, we effectively only use (25) in expressing
the rates of change of the mean elements. Since this involves

(q A ) = q- 1 A {q2 BI + (2 - 1) e Btk} (26)a- EAk Bk ALk BEk '

we define

E9 k = q2 Bik + (2 - 1) e Btk ; (27)

then (25) leads (via a recurrence relation) to

Eik = e-1 (Le2 - k) Bik + (9 - k) Bi,k_.1 (28)

A number of recurrence relations for the Bij are given in the
Report. However, these may all be generated from just two relations,
and we use here the following pair, as being most useful in the sequel:

(-) e Bj 1 + 2j Bij + (j + ) e B. ,j+I = 0 (29)

and

(. - j) e Bi+I, j + 9.q2 B9 ,j+I - (1, + j + 1) B.+I 0 . (30)

Alternatively, we can replace the unsymmetrical (30) by the more
symmetrical (and simpler) equation

le (Bi,j I - gj I ) = 2j B ,j 1 (31)

given by Zafiropoulos 6 in his orbital theory for an axi-symmetric
field.

TMS 379
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RATES OF CHANGE OF OSCULATING AND MEAN ELEMENTS

It is straightforward to derive finite expressions for the

perturbations in the osculating elements, so long as we change the

variable in Lagrange's planetary equations from t to v before
integrating. The equation needed for the change of variable is

dv/dt = n q-3 (p/r)2  (32)

We obtain the expression for 6a first, however, because a direct deri-

vation is available, which is simpler than using the planetary equation.

The starting point for the direct derivation of 6a is, as in

previous workl- 4 , the existence of an energy-related absolute constant

of the motion, which we denote by a' ; the relation

a = a' (1 + 2aU/P) (33)

is exact for any time-independent d sturbing function, U , and in
particular for the axi-symmetric Ut I It follows that there is no

long-term variation in a , to whatever order of magnitude the pertur-
bation analysis is conducted. Further, the short-period perturbation,
5a , is given exactly, on substituting for U from (10); thus

6a = -2a'q
- 2 A~k (p/r) I 1 Ck . (34)

This does not mean that an exact perturbation can be written down for

semi-major axis, however, as the right-hand side of (34) is expressed in
terms of osculating elements; as soon as mean elements are introduced,
the result is no more than a first-order perturbation expression.

To present 6a in the form appropriate for later use, we combine
C with one of the factors p/r . We retain another p/r factor expli-
citly, and expand the remaining (p/r)i- I by (21). By this means, we
effectively transform the term 2C0 , for example, into C. + C_• . But
each pair of terms (such as this) for positive j , in the infinite
summation of (21), is matched by the same pair (in reverse order) for
negative j , so we can express our desired result as

6a = - aq- 2 Aik (p/r) I Bij (eCj_ 1 + 2Cj + eCj+ I ) (35)

For the remaining elements (e, i, a, w and M) , it is convenient
to start with the time rates of change of p, pc2 , 0, 41 and p, since the
right-hand sides of the planetary equations for these rates are the

single-term expressions (2q/na) aU/3w, (2qc/na) aU/", (1/na 2qs) aU/Bi,
(q/na2e) aU/ae and (-2/na) aU/3a, respectively. We now use (32) to
change the variable to v , and (21) to eliminate r , as a result of
which we get (with only a finite number of non-zero terms from each
infinite summation):

dp/dv - 2kp Alk I Bj So , (36)

d(pc 2)/dv - 0 , (37)
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dQ/dv - - S-1 Ah< I Bij Cj , (38)

diP/dv = - L e - 1ALk I Bij {(i + 1 - k)e Cj_2 + 2(1 + 1 - 2k)Cj_1
+ 2(. + 1)e C. + 2(1 + 1 + 2k)Cj+ I + (Z + 1 + k)e Cj+21 (39)

and

dp/dv - 2(1 + 1)q A tk I Bj Cj (40)

We also require a formula for the rate of change of the (shorthand)
quantity f ; the appropriate formula is

df/dv = n'/t + 3q AZk I Bij Cj, (41)

where n' is the exact constant defined by n' 2 a'3 
=

To obtain the rates of change of the mean elements, we select theterms involving Ckk or Skk (in the equations other than (39) this

implies just j = -k ), since these are the terms that are independent
of v . We abandon p and pc2 in favour of e and i , but we
retain qp and p , since the secular and long-period rates of these
(mean) 'elements' are useful in practice, and this is also true for L
since 'a (i.e. a' ) does not vary, our full results may be written
(after simplification where necessary):

k = - kne-1 q 2 A9 k B Zk S-k (42)

= kncs- 1 Aik Bik k (43)'Ek -kI

Q.k = - ns- Ak B -k ckk I (44)
-2k = - ne- 1 Alk Eik C kk (45)

= - 2(t + 1)nq A9k B9 k Ckk (46)

and

Lk - (21 - 1) nq ALk Bik C-k (47)

The remaining terms from (36)- (40), those that depend on v
lead to the pure short-period perturbations in the elements. For future
reference we supplement this set of equations by giving those for e
i , M and L , which can be derived from the original set (with an
appropriate formula for da/dv included); thus:

de/dv - L Aik Z B9 j {k - 9 - 1)e Sj_ 2 + 2(2k - 9 - 1)S

+ 6ke S + 2(2k + X + I)Sj+ I + (k + I + 1)e Sj+ 2 }  (48)

di/dv - kcs -1 ALk Z Btj Sj , (49)



11

dM/dv = ' e-lq Ak I Bij 1(i + 1 - k)e Cj_ 2 + 2(1 + 1 - 2k)Cj_1

- 6(1 - 1)e Cj + 2(1 + 1 + 2k)Cj+1 + (9 + 1 + k)e Cj+ 2 } (50)

and

dL/dv = - (21 - 1)q Ak I Bij Cj (51)

The integration of these equations is entirely straightforward, since
the analysis is only being taken to first order; also, zero denominators

cannot occur, because the terms that would produce them are precisely
the ones that have been dealt with separately and are no longer present.

To save space, therefore, these integrals are omitted.

In the rest of the paper we are concerned with the amalgamation of
the integrals for short-period 6a etc into formulae for the coordinate
perturbations, 6r, 6b and 6w. However, we conclude the present section
with two remarks about the secular and long-period perturbations - they
will be relevant in obtaining the formulae associated with J4 , to ex-
emplify the general results. First, the long-period perturbations
induce additional terms in 6r, 6b and 6w, as noted in the Introduction.
Second, when Z is even it is convenient to deal with the secular per-
turbation in M by use of a 'mean mean motion', iY, that is not the
same as n' (except, as it happens, for Z = 2 ); since N is ident-
ified with a' , this means that Kepler's third law does not hold for
mean n and a (This is covered in detail in the Report, and Ref. 7
is almost entirely devoted to the matter.)

COORDINATE PERTURBATIONS (GENERAL CASE)

In this section we develop general expressions for the 6r , 6b

and 6w that can be derived from the (untruncated) first-order formulae

6r = (r/a) 6a - (a cos v) 6e + (aeq-1 sin v) 6M , (52)

6b = (cos u') 6i + (s sin u') 60 (53)

and

6w = 61 + {q- 2 sin v (1 + p/r)) 6e + q-3 (p/r)2 6M (54)

Special cases, associated with the particular choices of mean elements

that will be derived, are reserved for the next section of the paper.

Generation of the expressions for 6r and 6w is essentially
straightforward in that the analysis starts with the 6a etc due to
k and finishes with 6r9k and 6wk . With 6b , however, there is a

complication, due to the appearance of u' in (53), as opposed to v
in (52) and (54); we deal with the difficulty by deriving 6b EK , rather

than 6b9 k , where K has values of opposite parity to those of k

We do not give expressions for 6r, 6b and 6w, but they are immedi-
ately available 2,3 from the expressions for 6r, 6b and 6w, just by
replacing Sj and Cj by (k + j) i Cj and -(k + J) F Sj
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We can do better than this if we allow for the (overall) rate of change
of , replacing (k + J) F by (k + j) F + k Z , assuming Cj and

Si still to be shorthand for C and S

The Perturbation 6r

We have to apply (52) with 6a , 6e and 6M given by (35) and
(the integrals of) (48) and (50). The integrals combine in a very
natural way, and we are able to write

6r -aAk I Bj Rj, (55)

where

[ e(j _- - )(k + - 2 k j j-1 + k + j 1

+ 2j - + cJ + e(j _ 9 + Z + + 1 21cj. . (56)k + j + I k + j k + j + 2 (6

It can be seen that (55) is a summation in which Rj , as given by
(56), has three components, each component being expressed as the sum of
two multiples of the same 'C quantity'. We separate the first multiple
from the second (in each component of Rj ), feed'rg them back separate-

ly into the summation of (55); this leads to tw istinct summations
that we can denote by E_ and E+ . Thus Z_ involves Z Btj Rj_ , where

R i I - 1 eCj I+ 2 2j + 1 1 Cj + 3 j - 9 + 1 eC (57)
- k + j - 2 j-1 k + - 1 Ck + j jI

Since sums over B can be regarded as running from -- to -,
it follows that we can rearrange the three sets of terms in LBj Rj_
so that (with j now used in a different way)

I Bij Rj_ = {(J + )e Bi,j+ I + 2(2j + Z -I)Bj

+ 3(0 - Z)e B,j_ 11}(k + j - 1)-I Cj . (58)

Using the recurrence relations (29) and (30), we can simplify this to

I Bij Rj_ = 2(1 - 1)q 2 I (k + j - 1 Bz_ 1,j Cj (59)

Similarly,

Bij Rj+ = - 2(1 - 1)q2 I (k + j + 1 BI. ,j C1  (60)

The final result we require now follows from (55), (59) and (60).
Because of its importance, we write Cj in full. Thus

6rk -(Z - 1) p A&k Z (k + j + 1)(k + j - 1) BE- 1,j cos (ku' + iv)

J .... (61)

TM Qf '170
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If j = -k ± 1 , there is a zero denominator in (61), and terms
with these values of j must be excluded; in the next section we
determine integration constants for 6eik and 6Mk so that the terms
with these two values of j are forced to zero. It will be noted that
all the cosine terms occurring in (61), for a given J, and all possible
k , are distinct, except that if k = 0 (1 even) then equal and opposite
values of j lead to identical terms in cos jv . On this basis we can
derive the total number of terms required to express 6r for a given
value of 9 . This is done in detail in the Report, the result being
Z2 - -(39 - 1) when Z is odd and 92 - '(3Z - 2) when Z is even.

The perturbation 6b

We get 6b from (53), where 6i and 6Q are given by the
integrals of (49) and (38). This is on the assumption that 6b (= 6bik)
is associated with UZ , following the decomposition of Uk . We shall
find, however, that it is much more convenient to decompose the total
6b (associated with U. ) as I 6biK , where the summation is for values
of K that are of opposite parity to 9 and we no longer associate the
individual 6b (= 6b£.) with specific components of UL.

In relation to Uk , we get

6b B kcs- 1 A .  k Cos u' + 1 A' k sin u' (62)
6b~~~k f ~ k + j Aik Cjco k +- Aj sj

The trigonometrical products are replaced by sums, in the usual way, and
we can then invoke the notation of (15) to write

6 b9 k = - 'e B (k + j)-1(Ak C - I + A- Ck+I ) . (63)

This expression may be contrasted with (55) and (56) for 6r In view
of the difference in superfix (whereas the suffix alone varied in the
terms of Rj ), in the two C terms of (63), we would now like to
combine a pair of terms with different k indices, before the summation
over the j index operates.

With the philosophy just indicated, we make the new decomposition

6bi = I 6b1 , (64)

where each 6b (= 6bZ. ) is of the form

6b = I Tj Bij C' (65)

and we require an expression for T. We note first that since (for
non-trivial results) k runs from or 1 to 9 (taking alternate
values), it follows that, in principle, K runs from -1 or 0 to
E + 1 (again alternate values, but of opposite parity to k): for the
minimum value of K , only the term in A+k , in (63), contributes to
Tj , whilst for the maximum value of K , only the term in A&k contri-
butes; for intermediate values (if any), both terms contribute. But we
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can straight away dismisi the 'maximum value' (K = I + 1), because A.

is just a multiple of s ; from this it follows that A- , defined by

(15), is zero. (Also Pu = 0 anyway!) We find that we do not require

the 'minimum value' (K = -1) either. Then, using (16) and (17) for Alk
and Aik , respectively, we get

J + 1 (t - K + I)( + K)Tj -KJ + j + I +I 4K(K + j - 1)

(R/p)t SK A (i) (66)

The quantity in curly brackets in (66) is a pure constant, in

which the are given by (7): thus the first a involves PK+(o)
and the second involves PK- (0) , these being given by (8). By rela-

ting these to pK (0) , and hence, via i given by (11), to AiK

given by (12), we can rewrite (66) as

I AIK f UK+m u-1 (6Tj (67)y
2
UK I- _1 K~ 1J(72 K + j + 1 + j -I"

The preceding argument is the general one, for 1 K ; 9. - 1

and for K 2 we can obviously cancel uK out with uK+1 and u.1
Very conveniently (with the full argument given in the Report), (67) is
also correct without the occurrences of u for K = 0 (9 odd), and even
for K = 1 (1 even) on the basis that the case K -1 is then auto-
matically covered.

We can now write down the final result we require, on substituting
(67) into (65) and expressing CK in full. ThusZ

6biK : - I A£. . (K + + I)(K + - Ij COS (Ku' + jv) (68)
3

As already indicated, this formula is unlike (61), the correspond-

ing one for 6r , in that it cannot be taken in isolation as relating to
a sub-component of UZ . It is like (61) in one respect, however, in
that terms of 6b with j = -K ± 1 are excluded. In the next sec-
tion we determine constants for 6i9k and 6Q9.k (k , not K , now

being the appropriate symbol) such that these terms are forced to zero.

On this basis we can derive the total number of terms (without duplica-
tion of Cj ) required to express 6b for a given value of I . The
result (derived in the Report) is j2 - 4-(1 - 1) when E is odd and
Z2 - I(39 - 2) when I is even (the latter being the same as for 6r ).

The perturbation 6w

The analysis for 6w s much more like the 6r analysis than the
6b analysis, because each U0  can again be treated separately through-

out. There are two complications, however. First, (54) effectively
involves cos 2v and sin 2v , not Just cos v and sin v (we see this

at equation (69), following), and this means that the values J = -k ± 2

are special as well as j - -k ± I . Second, we cannot take 6w to be
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zero for any of these special cases, since the constants in 6e and 6M
must now be assumed to have been already assigned; formulae for the four
special 6w will be obtained in the next section. Actually, a fifth
special case emerges, corresponding to j = -k and a zero denominator
k + j ; 6w for this case can be set to zero, since we still have (for
each k) the unassigned constant in 6w available for the purpose.

We start by rewriting (54) as

6w = 2q- 2 (6e sin v + eq-1 6M cos v) + + eq- 2 (6e sin 2v

+ eq-1 6M cos 2v) + + e2q- 3 6M + q-1 6L , (69)

where 6e , 6M and 6L are available from the integrals of (48), (50)
and (51). The integrals for 6e and 6M combine in a very natural way
and we eventually get, changing the interpretation of j (as in the
analysis for 6r ) so that we use the same Sj in each term:

6w = .,q- 2 A 3e2  + -*k + 1+Z-k B + 2e 1+-E+.2k
1kk+j+2 k+j I +2 k+j+2

+61 - Z+k +31 + i-2k + 2 1 + Z-k ) B [(2 1+t+k
S+j + 1 k+j k + j - 1 kj+1 [e k + j +2

+ 81 +i+2k + 2 4(1-21) + e2 (5- V + 81+1-2k
k +j+1 k+j k+j-1

+ e 1+ I- Bj + e2 I++k + 3 1+ Z+ 2k + 6 1- I- k2 1 I-k B 2e 2  +j + 1 k+j k+j -1

+ , +I 3e2-2 + 1+k 1 - E-k
kk + kj 2 B,j kSj . (70)

Though the algebra is tedious, we can eliminate Bi +2 and

BLj-2 via appropriate versions of (29). If we express te result as

6w - jq-2 Alk I (Vj,1 BEj+I + Vjo Bij + V,_..1 Bi,jI) Sj , (71)

the formulae for V V 0 and V, -1 are initially very complicated.
They can be greatl)'slmplfotied, however; for Vj n this was done by a
technique akin to partial fractions. The result ng expressions are

V E1 J 6 _ . 3 + 2 ) (72)

VJ, 1  - 2e(+)k++ 2  j +1 k+ j k+j- 1) (

- 8 [+2k+1 2t-1 + L-2k+ 1

vj, 0  lk +j 1 k +j k +J - 1

2e2[ k+  2  2(i+1) + i --k (73)
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and
[ 2k + 3 6 + I1

Vj, I = 2e(i - j) + j.-L1.k + + 1 (74)
,-1kj+ k+j k+j- I k+j-2J

As a result of this considerable simplification, V. 1 B£ i+1  and

V -1 B- • 1 *are now in a form suitable for the elimination of BE +,
an6 B in favour of BEA and B£-I ,j , via an application of wo

Z J-
recurrence relations, (30) an a similar one. Thus, if we now write

6w = Ak L (W£, 0 Bij + W ,j)S , (75)

we get

e e= 2( + k + 1 2 + 1 + £ - k + (76)
,o (2k + j + 2 k + j k + j - 2j

and

1 = - 2(1 4 + 6w[i7( -I)k+ j +2 k + j + 1 k + j

141 + (77)
k + j -1 k + j - 2)

The final result we require follows from the substitution of (76)
and (77) into (75). Writing Sj in full, we get

6 Wik w Aik 1 + + - f[2(£ + 1) - k(k + j)] Bj
(k +j +2)(k + j)(k + i 2) ij

(k + k + j - 1 B-I,,j sin (ku' + jv) (78)

Equation (78) is the general formula for 6w due to U. As
with (61) and (68), for 6r and 6b respectively, it applies for all

Z £ 1 ; like (68) but unlike (61), on the other hand, values of lil up
to Z - 1 (not just E - 2 ) are required to cover all the non-zero
terms. For each k , zero denominators exist for five different values
of j for four of these values ( j - -k ± 1 and j - -k ± 2 ), spe-
cial formulae are required, in place of (78), as already noted; only
for the fifth value ( j - -k ) can a term (for each k ) be actually
excluded. It should be noted that one specific null term arises for
each even value of E . Thus, for k - 2 and j - I - 1 , we see from
(78) that the coefficient of Bij is identically zero (independently of

I ), but B,_I , is itself zero when j - i - , so this specific term
of 6wi, 2 always vanishes. On this basis we can derive the total
number of terms required to express 6w for a given value of 9 ,
counting in the terms derived in the next section. The result (derived
in the Report) is j2 when i is odd and j2 - 1 when 9 is even.
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THE SPECIAL CASES, AND INTEGRATION CONSTANTS

The main results in this section are the formulae required to
supplement (78), the general formula for 6w . These formulae, covering
the cases j = -k ± I and -k ± 2 , are forced by the 'constants' for
6e and 6M , which are determined so that the terms for j = -k ± 1
can be excluded from 6r . We also give the formulae for the constants
associated with the main elements, i.e. for the quantities independent
of v that are deliberately introduced when the v-dependent components
of do/dv , for example, are integrated; by giving these formulae we
effectively define the ean elements underlying the theory. (The const-
ants associated with J2 perturbations are given in Ref. 2).

Mandatory Constants for 6a

We go back to (34), the original expression for 6a due to U .

We can expand the complete factor (p/r) + l in terms of the BZ+2 J
(cf the expansion via the B91  in (35)). On taking just the term of
the expansion with j = -k , wl isolate the constant term that (for each
k , and a given J£ ) is mandated by taking I = a'

The result can be written in the form (for the 'constant' compo-
nent of 6aik )

6aik(c) = -2aq- 2 Ak BE 2,k cos kw' (79)

Constants for 6e and 6M

We have to derive the formulae for 6etk(c) and 6Mk(c) that
will legitimize our taking the terms in 6rik for j - -k + 1 and
-k - 1 to be zero. These 'constants' will complete the formulae, for
6e and 6M , given by the integrals of (48) and (50) respectively.

We start by noting that (61), the general formula for 6rik , was
obtained by combining the two different denominators from (59) and (60).
If we do not combine the denominators, we can rewrite the formula as

6 r~k - - i( - 1)p Ak X [k + - 1 1k + j 1 B_ Cj (80)

The first denominator here is associated with the E_ summation of (57),
and if this summation still applied for j = -k + 1 , the result would
be an infinite coefficient of B£_1,-k+1 C_k+1 * We actually want this
coefficient to be --(£ - 1)p ARk ,'since it will then neutralize the
coefficient that arises without difficulty from the second denominator
in (80). The situation is reversed when j = -k - 1 and we want the
coefficient of BJ_1__ C_k _. , from the second term of (80). to be
+(i - 1)p Aik (an not infinity) to neutralize the first term. What we
do, therefore, is to obtain the coefficients of Ck+1 and C-k_1 that
would apply in the absence of the constants 6eik(c) and 6Mtk(c) ; we
can then derive the appropriate values of these constants to cancel
these putative coefficients.
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The details of this analysis (given in the Report) are omitted
here, and we proceed directly to the results, which can be written as

6eik(c) - - L Ak {eBi,k+ 2 - (£ + k - 4)Bjk+1 + 2(1 + 2 )eBik

- (Z - k - 4)Bi,k I + eBt,k_2 } cos kw' (81)

and

6Mtk(c) = 4 e - q Aik teB£,k+2 - (i + k - 4)Bi,k+ I - 2keBik

+ (i - k - 4)Bi,k I - eBt,k_2 } sin kw' . (82)

Constants for 6i and 60

We have to derive formulae for 6i(c) and 6n ,j to legiti-
mize taking the terms for j = -K + 1 an -K - 1 in the general
expression for 6b EK , to be zero. The analysis is somewhat simpler
than that in the preceding section, in spite of the complexity entailed
by the need to work with both k and K .

As with 6rik , we start by observing that (68) was obtained by
combining two denominators, which appeared separately in equation (67).
When j - -K + 1 , the second denominator becomes zero and no longer
operates; from the first alone we get, as the effective term in (68),

-44 Aik B, +i CK +1 . When j = -K - 1 similarly, the first
denominat6or in (6 ) does not operate, and (68) effectively reduces to

4£ ALK B -  -  C-K-1 These terms have to be cancelled by the use of
6ik(c) and 6aik(c) , with appropriate k . Again we leave the
details to the Report, proceeding directly to the results, which are

6itk(c) = + A& Bik cos kw' (83)

and

6stk(c) = +kcs - 2 Ak BEk sin kw, (84)

Forced Terms in 6w

kWe now have, for each U, , only one 'constant' at our disposal;
denoted by 6wak(c ) , we shall determine it (in the next sub-section)
so as to validate the nulling of the term for j - -k in the formula,
(78), for 6w2k . For j - -k ± 1 and -k ± 2 , on the other hand, we
are forced to accept non-null terms that arise, via (54), from (81) and
(82); we now have to derive the formulae for these terms. For each of

the four special values of j , in principle we embark on a procedure
that is similar to that employed in the derivation of 6etk(c) and
6Mik(c) , though more direct. In practice, however, instead of
developing our four special formulae more or less ab initio, we start
four times from the (final) general formula for 6w , (78), and modify
it each time in the appropriate manner, replacing 'general' terms that
would be infinite by special terms based on 6etk(c) and 6Mtk(c).
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As usual, we omit the details (supplied in the Report) and simply
quote the results. Our four special-case formulae can be expressed as

6 Wk,_k+ I  - r Aik 1(21 - k + 2) Bi,k I

+ (i - 1) Bil,k-l1 sin (v + kw') , (85)

6Wik,-k-1 -T Aik 1(21 + k + 2) Bi,k+1
+ (2 - 1) BE_1,k+1} sin (v - kw') , (86)

6Wtk,_k 2  = - A48k f3(1 + k + 5)Bi,k_ 2

- 19(t - 1)Bi_1,k_2} sin (2v + kw') (87)

and

6 Wik,_k_2 - 1 Alk 13(1 - k + 5)Bik+2

- 19(1 - 1)Bt_1,k+2} sin (2v - kw') (88)

Constants for 6w

It remains to determine the constant, 6wtk(c) , that legitimizes
our taking the term for j = -k in (78) to be zero. We already have
6Mik(c ) , given by (82), so we only need to determine 6L2k(c) , the
constant in 6Lk , for 6wik(c) to be known at once.

It turns out (with the details in the Report) that

6 Ltk(c) - kq A&k Bik sin kw' . (89)

From (82) and the definitions of L and * , it follows that

6k( ) = - e-1 Aik {e Bi,k+2 - (I + k - 4)Bj,k+I + 2keBik
+ (2 - k - 4)Bt,k I - e Bt,k_2I sin kw' (90)

Finally, 60ik(c) is givern by (84), so the formula for 6wtk(c) is

6 wik(c) - 1 e1 A2k le BS,k 2 - (i + k - 4)Bj,k+1 + 2kes - 2 Btk

+ (I - k - 4)Bi,k_1 - e B£,k_2l sin kw' (91)

RESULTS FOR J4

The formulae of the two preceding sections are valid for t 1
the case t - 1 being trivial. To exemplify the straightforward use of

these fomulae, and the complementary formulae for the rates of change of

the mean elements, results for 2 - 1, 2, 3 and 4 (together with an
analysis for the exceptional case, also trivial, L - 0) were given in
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the Report. Only the results for Z = 4 were new, however, so here we
confine ourselves to these. For convenience in expressing the formulae,
we define G = T02.- J4 (R/p)

4 and f = s2

We start with the secular rates of change for U and . From
(44) and (45) we get, with 2 = 4 and k = 0,

= 480 Gnc(4 - 7f)(2 + 3e2 ) (92)

and

= -120 Gn(8 - 40f + 35f 2 )(4 + 3e2) , (93)

from which it follows that

w = -120 Gn{4(16 - 62f + 49f2) + 9e2(8 - 28f + 21f 2 )} . (94)

We avoid an explicit secular perturbation in F by modifying Kepler's
third law. From equation (15) of Ref. 7 (or the formulae in the Report)
we require (for J4 the only non-zero harmonic)

-2 3 = 1I + 288Gq 3 (8 - 40f I 35f 2 )} (95)

Next, we cover the long-period rates for all the elements (except

a). From (42)- (47), we get, with 2 = 4 and k = 2

= -480 Gneq 2f(6 - 7f) sin 2w , (96)
T = 480 Gne 2cs(6 - 7f) sin 2w , (97)

= -960 Gne2c(3 - 7f) cos 2w , (98)

= -240 Gnf(6 - 7f)(2 + 5e2) cos 2w , (99)

= -2400 Gne 2qf(6 - 7f) cos 2w (100)

and

= -1680 Gne 2qf(6 - 7f) cos 2w (101)

Turning to the perturbations in the coordinates, we expect the
number of terms in 6r, 6b and 6w to be 11, 11 and 15, respectively, from
the formulae given earlier. Starting with 6r , we note that there are
terms for k = 4 , k = 2 and k - 0 , with values of j , a priori,
satisfying fJj - 2 ; but for k - 2 we exclude j = -1 ; and for
k - 0 we exclude j = ±1 , whilst the terms for j = ±2 are identical.
Then (61) gives, corresponding to the three values of k

6r - -2Gpf 2 16e 2 cos 2(2u + v) + 35e cos (4u + v)

+ 28(2 + e 2 ) cos 4u + 105e cos (3u + w) + 70e 2 cos 2(u + w)} , (102)

6r - -8Gpf(6 - 7f)12e 2 cos 2(u + v) + 15e cos (2u + v)
+ 20(2 + e 2 ) cos 2u - 30e 2 C0 24i (103)
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and

6r = -24Gp(8 - 40f + 35f 2){e2 cos 2v - 3(2 + e2)} (104)

For 6b , the effects are for < = 3 and = I , the a-priori
values of j being the seven with jil < 3 . For K = 3 we exclude
j =-2 , and for K = 1 we exclude j = 0 and j = -2 . Then (68)
gives, corresponding to the two values of K ,

6b = -4Gcsf {14e 3 sin 3(u + v) + 35e 2 sin (3u + 2v)
+ 28e(4 + e2) sin (3u + v) + 70(2 + 3e2) sin 3u

+ 140e(4 + e2 ) sin (2u + w) - 140 e3 sin 3w} (105)

and

6b = -4Gcs(4 - 7f)14e 3 sin (u + 3v) + 45e 2 sin (u + 2v)

+ 60e(4 + e2) sin (u + v) - 180e(4 + e2) sin w

- 20e 3 sin (2v - w)} . (106)

For 6w , the effects are again for k = 4, 2 and 0, with the same
a-priori j values as for 6b . For k = 4 , all seven j values yield
terms, of which five come from the general (78); for j = -2 we use
(87) and for j = -3 we use (85). For k = 2 , the term with j = -2
is excluded, whilst for j = 3 , (78) gives an example of a 'specific-
ally null' term; there are non-null general terms for j = 2 and
j = 1 ; and the terms for j 0 0, -1 and -3 come from (87), (85) and
(86) respectively. Finally, for k = 0 the term with j = 0 is
excluded; the other terms come in pairs, being 'general' for j = ±3
from (87) and (88) for j = ±2 , and from (85) and (86) for j = ±1
Corresponding to the three values of k , we get

6w = -Gf2 l4e 3 sin (4u + 3v) + 31e 2 sin 2(2u + v) + 4e(21 + 5e2 ) x

x sin (4u + v) + 28(3 + 4e2) sin 4u + 28e(7 + e2) sin C3u + w)
+ 175e2 sin 2(u + w) + 140e 3 sin (u + 30)1 , (107)

6w = 4Gf(6 - 7f) {2e 2 sin 2(u + v) + 4e(5 + 2e2 ) sin (2u + v)

+ 5(8 - 7e2 ) sin 2u - 80e(5 + e2) sin (u + w)

- 40e3 sin (v - 2w)} (108)
and

6w = 4Ge(8 - 40f + 35f2 )12e 2 sin 3v - 3e sin 2v

- 6(24 + 5e2 ) sin vi . (109)

It remains to cover the induced short-period terms from the secu-
lar and long-period rates of change: The effects induced by the secular
variation are included by adding (5/n)(v - M) , ('/n)(y - M) and
(A/n)(v - M) to - , 'a and Ff, respectively. Here and - are
given by (92) and (94), whilst F is the rate implicit in (95), so that

= 144 Gnq 3 (8 - 40f + 35f 2 ) ; (110)
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The effects induced by the long-period variation, on the other hand, are
allowed for via additional terms in the expressions for 6r, 6b and 6w.

Using (52) -(54), we find that these additional terms are given by

6r = 480 Gpe(v - M)f(6 - 7f) sin (u + w) , (111)

6b = 240 Ge2 (v - M)cs {3(4 - 7f) cos (v - w) - 7f cos (u + 2w)} (112)

and

6w = 240 Ge(v - M)f(6 - 7f){e cos 2u + 4 cos (u + w) - 4e cos 2wi

(113)

EXTENSION TO TESSERAL HARMONICS

If the Earth's rotation rate is neglected, so that a' is still
an absolute constant of the motion, the formulae that have been derived

require surprisingly little change. The main change is, as one might
expect, the replacement of all occurrences of Alk and A, by quanti-
ties Almk and Aimc , to reflect the generalization of Ji to Jim
with the arguments of Ck and Sk in equations (1), replaced by
jv + ku' + m(Q' - X m) where 9' = - v - , the sidereal angle (v)
being supposed fixed; further, we now have to allow for negative values

of k , which takes alternate values from -2 to 9 . (For amplifica-
tion of these remarks, with definitions of Aimk and AtK , and a
discussion of two possible definitions of the Aim(i) functions that
generalize the Aj(i) , see Appendix A of the Report).

By making use of the quantities Almk and Aimc , we find no
difficulty in extending the theory, largely because the treatment of
(p/r)Z I , via the Btj , goes through unchanged. Thus, equations (35),
(48), (39) and (50), for 6a , de/dv , dip/dv and dM/dv , respectively,
are unchanged apart from the appearance of Aimk in place of Aim
Equation (38), for do/dv , requires a corresponding change, such that

the derivative Amk replaces A'm This just leaves (49), for di/dv
for which a slightly more complicated expression is now required, to
reflect the fact that pc2 is no longer an invariant. We have, in fact,

d(pc
2 )

dv =2rp Aimk I Bj Sj ,(114)

from which we derive

di = s-1 (kc - m) Aimk Z B9 j Sj (115)
dv

in comparison with equation (49), we see that the only additional change
is the replacement of kc by kc - m•
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Six of the seven formulae that define 6r, 6b and 6w completely,
for the zonal harmonics, apply immediately to the zonal harmonics, so
long as Aimk replaces Aim and the trigonometric argument includes the

term m(Q' - Xim) . These six are (61) and (78), for the general 6r and
6w , and (85) - (88), the four special formulae for 6w . In the seventh

formula, (68) for 6b , 9 Ai, must be replaced by (9 + m)Aimc , in
addition to the inclusion of the new term in the trigonometric argument.

The numbers of terms in 6r, 6b and 6w, for a given Jim , are
greater for m > 0 than for m = 0 , to reflect the distinction between
positive and negative k . These numbers are otherwise independent of

m , however, in consequence of which we find that there are 2Z2 - 3Z + 1
terms for 6r , 2Z2 - 31 + 2 terms for 6b , and 292 (for odd 9 ) or
2j2 - 1 (for even I ) terms for 6w

CONCLUSION

The original idea of Kozai 8 - that the short-period perturbations
due to J2 can be more compactly expressed by amalgamating 6a, 6e, 6w
and 6M into 6r and 6u - has been carried to its logical conclusion by

eliminating the short-period perturbations in all the elements in favour
of effects in spherical coordinates. The general formulae for these
effects are given by the summations in (61), (68) and (78), for the per-

turbations in r, b and w, respectively. Terms that would have a zero
denominator are excluded from these summations, as a consequence of the

optimal definition of mean elements, except that replacement terms are

needed for the perturbations in w ; the formulae for these are (85) -

(88).

The formulae for coordinate perturbations are complemented by
(42)- (47), which are the formulae for the rates of change of the mean

elements. Relatively speaking, these formulae, which lead to the

secular and long-period perturbations, contain very few terms, but over
periods of time longer than an orbital revolution the effects are much
greater than those from the short-period perturbations. Formulae to a

further order of approximation, i.e. to J and J2J£ (9 > 2), have

been given by Berger and Walch9 , and Kinoshita I0 , but expressions
appropriate to the mean elements used in the present paper have not yet
been derived.
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